96 research outputs found

    Effect of Nonlinearity on Adiabatic Evolution of Light

    Get PDF
    We investigate the effect of nonlinearity in a system described by an adiabatically evolving Hamiltonian. Experiments are conducted in a three-core waveguide structure that is adiabatically varying with distance, in analogy to the stimulated Raman adiabatic passage process in atomic physics. In the linear regime, the system exhibits an adiabatic power transfer between two waveguides which are not directly coupled, with negligible power recorded in the intermediate coupling waveguide. In the presence of nonlinearity the adiabatic light passage is found to critically depend on the excitation power. We show how this effect is related to the destruction of the dark state formed in this configuration

    Observation of Asymmetric Transport in Structures with Active Nonlinearities

    Get PDF
    A mechanism for asymmetric transport based on the interplay between the fundamental symmetries of parity (P) and time (T) with nonlinearity is presented. We experimentally demonstrate and theoretically analyze the phenomenon using a pair of coupled van der Pol oscillators, as a reference system, one with anharmonic gain and the other with complementary anharmonic loss; connected to two transmission lines. An increase of the gain/loss strength or the number of PT-symmetric nonlinear dimers in a chain, can increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure

    All-optical routing and switching for three-dimensional photonic circuitry

    Get PDF
    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits

    Dispersive, superfluid-like shock waves in nonlinear optics

    Full text link
    In most classical fluids, shock waves are strongly dissipative, their energy being quickly lost through viscous damping. But in systems such as cold plasmas, superfluids, and Bose-Einstein condensates, where viscosity is negligible or non-existent, a fundamentally different type of shock wave can emerge whose behaviour is dominated by dispersion rather than dissipation. Dispersive shock waves are difficult to study experimentally, and analytical solutions to the equations that govern them have only been found in one dimension (1D). By exploiting a well-known, but little appreciated, correspondence between the behaviour of superfluids and nonlinear optical materials, we demonstrate an all-optical experimental platform for studying the dynamics of dispersive shock waves. This enables us to observe the propagation and nonlinear response of dispersive shock waves, including the interaction of colliding shock waves, in 1D and 2D. Our system offers a versatile and more accessible means for exploring superfluid-like and related dispersive phenomena.Comment: 21 pages, 6 figures Revised abstrac

    Strain-induced pseudomagnetic field and Landau levels in photonic structures

    Full text link
    Magnetic effects at optical frequencies are notoriously weak. This is evidenced by the fact that the magnetic permeability of nearly all materials is unity in the optical frequency range, and that magneto-optical devices (such as Faraday isolators) must be large in order to allow for a sufficiently strong effect. In graphene, however, it has been shown that inhomogeneous strains can induce 'pseudomagnetic fields' that behave very similarly to real fields. Here, we show experimentally and theoretically that, by properly structuring a dielectric lattice, it is possible to induce a pseudomagnetic field at optical frequencies in a photonic lattice, where the propagation dynamics is equivalent to the evolution of an electronic wavepacket in graphene. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The induced field gives rise to multiple photonic Landau levels (singularities in the density of states) separated by band gaps. We show experimentally and numerically that the gaps between these Landau levels give rise to transverse confinement of the optical modes. The use of strain allows for the exploration of magnetic effects in a non-resonant way that would be otherwise inaccessible in optics. Employing inhomogeneous strain to induce pseudomagnetism suggests the possibility that aperiodic photonic crystal structures can achieve greater field-enhancement and slow-light effects than periodic structures via the high density-of-states at Landau levels. Generalizing these concepts to other systems beyond optics, for example with matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.Comment: 24 pages including supplementary information section, 4 figure

    Two-dimensional discrete Ginzburg-Landau solitons

    Get PDF
    We study the two-dimensional discrete Ginzburg-Landau equation. In the linear limit, the dispersion and gain curves as well as the diffraction pattern are determined analytically. In the nonlinear case, families of two-dimensional discrete solitons are found numerically as well as approximately in the high-confinement limit. The instability dynamics are analyzed by direct simulations

    BASAL PATTERN OF INSULIN-SECRETION, 1ST AND 2ND PHASE INSULIN-RESPONSE, IN OBESE AND NORMAL-WEIGHT MAN

    Get PDF
    We introduce a new classes of waves that tend to autofocus in an abrupt fashion. These waves can be generated through the use of radially symmetric Airy waves. © 2009 Optical Society of America

    X - Waves in nonlinear normally dispersive waveguide arrays

    Get PDF
    We theoretically demonstrate that optical discrete X-waves are possible in normally dispersive nonlinear waveguide arrays. We show that such X-waves can be effectively excited for a wide range of initial conditions and in certain occasions can be generated in cascade. The possibility of observing this family of waves in AlGaAs array systems is investigated in terms of pertinent examples

    soliton interactions

    No full text
    We show that the spatial coherence of a partially incoherent light beam can be greatly enhanced through an energy-conserving interaction with an incoherent or a coherent dark spatial soliton. Computer simulations show that during this process a portion of the incoherent beam is trapped within the dark notch of the dark soliton, thus forming a sharp intensity spike. In this region the correlation length dramatically increases by at least 2 orders of magnitude. (C) 2000 Optical Society of America
    corecore